2 1 M ay 2 00 6 Alcove path and Nichols - Woronowicz model of K - theory on flag varieties Toshiaki Maeno

نویسنده

  • Toshiaki Maeno
چکیده

We give a model of the K-ring of the flag varieties in terms of a certain braided Hopf algebra called the Nichols-Woronowicz algebra. Our model is based on the construction of the path operators by C. Lenart and A. Postnikov.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alcove path and Nichols - Woronowicz model of K - theory on flag varieties

We give a model of the K-ring of the flag varieties in terms of a certain braided Hopf algebra called the Nichols-Woronowicz algebra. Our model is based on the construction of the path operators by C. Lenart and A. Postnikov.

متن کامل

Alcove path and Nichols - Woronowicz model of K - theory on flag varieties Toshiaki Maeno

We give a model of the K-ring of the flag verieties in terms of a certain braided Hopf algebra called the Nichols-Woronowicz algebra. Our model is based on the construction of the path operators by C. Lenart and A. Postnikov.

متن کامل

Fe b 20 06 Alcove path and Nichols - Woronowicz model of K - theory on flag varieties Toshiaki

We give a model of the K-ring of the flag varieties in terms of a certain braided Hopf algebra called the Nichols-Woronowicz algebra. Our model is based on the construction of the path operators by C. Lenart and A. Postnikov.

متن کامل

2 00 5 on Some Noncommutative Algebras Related with K - Theory of Flag Varieties , I

For any Lie algebra of classical type or type G 2 we define a K-theoretic analog of Dunkl's elements, the so-called truncated Ruijsenaars-Schneider-Macdonald elements, RSM-elements for short, in the corresponding Yang-Baxter group, which form a commuting family of elements in the latter. For the root systems of type A we prove that the subalgebra of the bracket algebra generated by the RSM-elem...

متن کامل

1 3 Fe b 20 06 ON SOME NONCOMMUTATIVE ALGEBRAS RELATED TO K - THEORY OF FLAG VARIETIES , PART

For any Lie algebra of classical type or type G 2 we define a K-theoretic analog of Dunkl's elements, the so-called truncated Ruijsenaars-Schneider-Macdonald elements, RSM-elements for short, in the corresponding Yang-Baxter group, which form a commuting family of elements in the latter. For the root systems of type A we prove that the subalgebra of the bracket algebra generated by the RSM-elem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006